CATALOGUING OF ISSUES AFFECTING CHILDREN'S BUYING BEHAVIOR TOWARDS CONFECTIONARY ITEMS

Silender Singh Hooda*

<u>Mamta Rani^{**}</u>

Abstract

This paper has mainly focused to categories items used in buying behavior by children and effect of their demographic variables on the items in and on the factor as a whole. Factor analysis is employed on data of 25 items that have the most impinge on children's buying behavior towards confectionary items. The findings indicate that factor 5 is at the top by which children makes their buying behavior towards confectionery items (mean= 4.64) followed by factor 4 sales promotion (\bar{x} =4.47). On the contrary, they least consider satisfaction and promotional activities (\bar{x} =3.61) followed by attractive design (\bar{x} =3.89). Overall, the analysis provides an understanding consumer's satisfaction and promotional activities, attractive design and advertisement and availability are the alternatives and almost all reviewed studied in literature has also concluded these point directly and indirectly. The results are important for companies in confectionery business, regulators, investor, distributors and shopkeepers.

Keywords: Confectionary, Buying Behavior, Consumer's Satisfaction, Promotional Activities, Advertisement, Regulators and distributors.

^{*} Assistant Professor, Deptt. Of Commerce, Chaudhary Devi Lal University, Sirsa

^{**} Research Scholar, Of Commerce, Chaudhary Devi Lal University, Sirsa

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

ISSN: 2249-1058

1. INTRODUCTION

The global confectionery industry revenue is estimated to reach \$176 billion by 2018 with a compound annual growth rate (CAGR) of 3.0% over the next five years (2013-2018). Asia Pacific (APAC) emerged as the most growth potential region over 2007-2012, driven by growing population and gross domestic product (GDP) growth in developing nations. In Asia the confectionery industry of India is estimated around of Rs. 3000 crores, which was ranked 25th in the world in 2009, has now growing 15 per cent per year, as one of the largest and well-developed food processing sectors of the country. The credit goes to liberalization along with growing Indian economy, which

has led several multinational companies to invest in India's confectionery market. Trend of gifting confectionery products and untapped rural market are among the key factors that are expected to fuel growth in Indian confectionery market in the near future. Children have crucial role in making decisions for their concerned family which attract many researchers. The Indian families are becoming more modern day by day so that the decision making power is also changing (Chadha, 1995; Dhobal, 1999). As compare to India, Western countries are experiencing an increase in the number of single parent or female-headed households (Ahuja and Mangleburg et *al.*, 1999). Such a shift in family composition and structure has a bearing on the strength in the role that children are expected to grow at a compound annual growth rate (CAGR) of more than 18% during 2012-2015. It is also estimated that 30.7 percent population of India is less than 14 years in age in the year 2011 (A. R. Nanda, Haub A. R., (2007). In addition to this, 54% of India is estimated to be under the age of 25 (Bansal, 2004). So the Study has focused on this industry and on the basis of precedence made cataloguing of the factors affecting this market. Consequently, policies may be made for investment and promotions for this industry.

2. LITERATURE REVIEW

Children play an important role in deciding buying behavior of the family. There are many factors which influence children's buying behavior. Recent studies show that the main motivators are television, internet, peer group, media, advertisement, attached benefits of products, and attractiveness of the product. In today's swiftly changing world technology and information are advancing very fast. Children attracts toward technology faster as compared to

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Volume 4, Issue 1

ISSN: 2249-1058

other age groups. McNeal(1993) describes five ways in which a child learn to buy i.e. observation, requesting to buy something, doing selection, giving purchase assistance and finally shopping goods on their own choices. According to Kelly et al. (2002) brand and advertisement is like a mediator for teenagers when they shop for something. Livingstone (2006) finds internet responsible for increasing role of children in shopping. Pine and Nash (2002) evidenced that children (ranging from 3.8 to 6.5 years) who watched more commercial television requested a greater number of items from Father Christmas and also requested more branded items in comparison to Sweden where advertising to children is not permitted and found that the Swedish children asked for significantly fewer items. Seiter (1993), employed persuasive strategy in advertising on age category 8-10 years to children is to associate the product with fun and happiness, rather than to provide any factual product-related information and found a positive attitude towards advertisements. Lam's (1978) surveyed 4 to 7 years old children and their mothers in North America. The study revealed that a quarter of children said that they 'always', and 59% that they 'sometimes', asked mothers to buy cereals they had seen advertised on television, and the majority of mothers said that they yielded to requests (55% 'sometimes', 9% 'lot of the time'). (The confectioner– 2006 issue by Mr. Bardy Darwin) found that religious and the non-religious are both viable marketing targets for confections. Today's Gen X-aged moms are all about the "cute" factor. They love unusual novelty packages for confectioneries, it easier for her by giving basket-creation suggestions at point-of-purchase, by offering novelty packages that remind moms such items are "perfect for kids,". Hitchings and Moynihan's (1998) research with nine to ten-year-old children and parents in England, parents reported granting 96% of children's food requests. Four of the ten foods that children most frequently asked their parents to buy also appeared in the top ten most frequently recalled food adverts by children. Donkin et al. (1992, 1993) survey of English parents found that the largest category of children's requests for foods seen advertised on television was for cereals (18%), followed by biscuits and cakes (11%), fruit and vegetables (11%), and sweets and chocolates (10%). A total of 11% of requests were specifically for Kellogg's cereals; 45% of the requested products had added sugar. Radkar and Mundlay (2001) found that 'child's demand' for the product was reported by Indian parents as a substantial influence on buying decisions for several categories of food product. Ekstrom, Patriya and Ellen (1987) took a reciprocal view of consumer socialization of children and proposed that children contribute to decision outcome influencing their parents by direct

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Volume 4, Issue 1

ISSN: 2249-1058

expression of preferences and by communicating new knowledge to the parents and influencing purchases. They proposed that children whose family communication pattern is characterized by a high concept-orientation will influence (socialize) their parents more than children whose family communication pattern is characterized by a high socio-orientation. A child in a singleparent family, higher socio-economic status, and higher personal resources and in a sex-role egalitarian family will have more influence. A child will have greater influence for product purchase decisions that he/she considers important or for which he/she has high product knowledge. His/her participation in family decision making will tend to increase his/her satisfaction with family purchase decisions. Taras et al. (1989) investigated the relationship between children's television viewing and their food purchase requests, while watching television was also significantly positively correlated with number of food items and purchases were significantly correlated with saturated fat and sugar consumption (p = 0.012 and p = 0.001respectively), but not with salt intake. Research suggests that children have less clearly developed brand preferences than do adults, and that they are less consistent in terms of their brand choices (Bahn, 1986). This may be due to the fact that adults have more sophisticated categorisation ability, while younger consumer's apparent inconsistency may be due to lack of a frame of reference (John & Lakshmi-Ratan, 1992). Thus, we might anticipate that children would be more influenced by promotional activities than would adults (Young, 2003). This is consistent with the findings of Atkin (1978) and Ryans (1980); further, John (1999) notes that 'children have the most influence over purchases of child-relevant items (e.g. cereal). Confectionery has no fixed pattern of purchase although purchases are affected due to festival seasons (The confectioner-2006 issue by Jey Zemke. It was also observed that the purchase of white mint candies increased during winter. The sale pattern of gums remained stable throughout. At the advanced level suggestions were made to the industry that the varied shapes of candies like those of Santa Clauses, special cartoon characters if made available during summer vacations wrapped in gold stripes could be beneficial to the growth of industry. Conclusively no one author has categorized the variables as per their precedence and checked their demographic effect. The present study has tried to fill up these gaps.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

OBJECTIVE

To categories items used in buying behavior by children and effect of their demographic variables on the items in the factors.

3. METHODOLOGY

Hypothesis: There is no significant affect of demographic variables of children on the items in the factors related to their buying behavior.

SIZE OF SAMPLE, DATA COLLECTION METHOD AND TOOL: Non-Probabilistic convenience-cum-judgment sampling was used and responses of 100 children selected from Sirsa city of Haryana state. The children age group varies from 5-12 years. A structured questionnaire was prepared for the purpose and responses were filled by the researcher as age group of children was not suitable for filling questionnaire themselves.

Reliability: The response on 25 items chosen of children used for buying behavior in purchasing confectionery items were collected on 5-point Likert scale from 5 for completely agree, 4 for slightly agree, 3 for neutral, 2 for slightly disagree and to 1 for completely disagree. The interactive Cronbach's Alpha values for reliability in responses of respondents were found 0.629. The Content Validity Ration (CVR) above 0.80 is significant ($0.60 \le$ significant) of the present study. It means items in questions contains in questionnaires cover the content of the research significantly as by Kapoor D.R. and Saigal P. (2013).

Data Analysis Strategy: To analysis and interpret mean, standard deviation, factor analysis has been applied. For confirmation of descriptive statistics, *F*-test Statistic has used. The correlation matrix of 25 reaction items which were developed to know the overall affecting children's buying behavior towards confectionary items and the present study has found that there are more than 10 loadings greater than 0.600 correlation (greater than .400 correlation) between variables; it is reliable regardless of the sample size, (F. Andy and M. Jeremy, 2010). To test the appropriateness of factor analysis technique the correlation between the variables are checked and Keiser-Meyer-Olkin (KMO) measure of sample adequacy is also used for the same. The population correlation matrix is an identity matrix, is rejected by Bartlett's Test of Sphericity. The approximate Chi-square value is 1.421E3 with 300 degree of freedom, which is significant at 0.05 levels. The value of KMO statistic, 0.663, is also large than 0.6. Further, PCA method is used for extraction of variable for the component (factor) concerned. The extraction communalities, averagely for each variable has found 0.724 which is the amount of variance a

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Volume 4, Issue 1

ISSN: 2249-1058

variable share with all the other variables being considered. It is also the proportion of variance explained by the common factors. Theoretically, sample size is enough to calculate factor analysis. The reproduced correlation matrix of overall items in opinion making of agent towards selling of policies has shown 25 per cent non-redundant residuals (less than 50 per cent as per cent, as per application of Factor Analysis) with absolute values greater than 0.05, indicating an acceptable model fit.

4. Analysis and Interpretation

Ι.Μ

As per appropriateness of factor analysis technique stepwise confirmation is proceed in the analysis and interpretation.

Variables	Initial	Extraction
Taste-V ₁	1.000	.748
Colour-V ₂	1.000	.800
Packaging-V ₃	1.000	.776
Suitable Price-V ₄	1.000	.707
Shape-V ₅	1.000	.803
Quantity-V ₆	1.000	.785
Quality-V ₇	1.000	.610
Radio/TV-V ₈	1.000	.376
News Paper-V ₉	1.000	.756
Kids Magazine-V ₁₀	1.000	.774
Peer Group-V ₁₁	1.000	.792
Elders-V ₁₂	1.000	.812
Parents-V ₁₃	1.000	.719
Free Gift-V ₁₄	1.000	.814
Buy 1 Get 1 Free-V ₁₅	1.000	.815
Extra Quantity-V ₁₆	1.000	.687
Scratch Coupon-V ₁₇	1.000	.869
Discount-V ₁₈	1.000	.858
Easily Accessibility-V ₁₉	1.000	.749
Salesman Behaviour-V ₂₀	1.000	.814
Window Display-V ₂₁	1.000	.604

Table 1: Communalities

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology

ISSN: 2249-1058

Festive Season Display-V ₂₂	1.000	.705
Bright Lighting-V ₂₃	1.000	.694
Pleasant Scent-V ₂₄	1.000	.716
Music-V ₂₅	1.000	.596

Source: Primary, (Data Processes through SPSS 18.0).

Extraction Method: Principal Component Analysis.

Table 1 shows that scratch coupon share variation the most with other variables with .869 followed by discount. On the contrary, it is found that radio/television (TV) share the variation the least followed by music. But, averagely it is found that 0.724, which is the amount of variance a variable averagely share with all the other variables being considered.

				E	xtraction	Sums of	Rotation Sums of Squared					
	Iı	nitial Eige	nvalues	S	Squared Lo	oadings	Loadings					
		% of	Cumulative		% of	Cumulative		% of	Cumulative			
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%			
1	5.353	21.413	21.413	5.353	21.413	21.413	3.746	14.985	14.985			
2	3.391	13.565	34.978	3.391	13.565	34.978	3.358	13.430	28.415			
3	2.776	11.103	46.081	2.776	11.103	46.081	2.475	9.900	38.316			
4	2.256	9.026	55.107	2.256	9.026	55.107	2.362	9.447	47.763			
5	1.966	7.863	62.970	1.966	7.863	62.970	2.286	9.143	56.905			
6	1.539	6.156	69.126	1.539	6.156	69.126	2.104	8.414	65.320			
7	1.094	4.376	73.502	1.094	4.376	73.502	2.046	8.183	73.502			

Table 2: Total Variance Explained

Source: Primary, (Data Processes through SPSS 18.0).

Table 2 shows that out of 25 variables 7 components have been extracted which having Eigenvalue one or more than one. The extracted components cumulative percentage of variance accounted for 73.502 of the total variance.

Table 3: Factor Pattern Matrix

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Volume 4, Issue 1

ISSN: 2249-1058

Reaction items→									Ro	tated C	ompo	nent M	atrix	
Ļ		(Compo	onent	Matrix	X			Ro		ompo		uun	
1	1	2	3	4	5	6	7	1	2	3	4	5	6	7
\mathbf{V}_1	296	258	.485	036	.407	.436	036	078	.353	.064	.108	.018	154	.760
V_2	735	.077	.430	106	.165	.023	.173	270	.813	.000	.142	034	100	.188
V_3	758	.061	.299	247	.151	.088	.132	357	.756	018	.004	145	141	.190
\mathbf{V}_4	.568	411	.099	076	.020	.447	.004	.394	.458183		- .071	130	.010	.536
V_5	691	.114	.393	120	.150	075	.340	163	.874	035	.067	013	014	<mark>.07</mark> 6
V_6	064	514 .396 .195		.195	.374	.420	.078	.103	.134	131	.077	.27 <mark>4</mark>	070	<mark>.80</mark> 8
V_7	.624	314	.120	038	.078	.312	.053	.488	- .412	081	- .061	067	.049	.429
V_8	.198	.191	009	.316	234	.295	242	139	- .392	.044	.358	074	.252	<mark>.06</mark> 0
V 9	.795	337	.011	067	.034	.060	.027	.635	- .539	066	- .129	003	04 <mark>2</mark>	.198
\mathbf{V}_{10}	.822	129	.115	115	.132	134	.139	.787	- .354	.117	- .118	011	.005	<mark>.04</mark> 3
V_{11}	054	443	185	.606	.418	121	037	086	.131	009	- .087	.843	037	<mark>.2</mark> 18
V ₁₂	117	387	170	.653	.391	199	031	117	- .070	.001	- .034	.880	029	.133
V ₁₃	145	287	.004	.607	.055	454	.196	.066	.141	212	.144	.770	.017	<mark>18</mark> 9
V_{14}	063	.217	.617	.433	258	019	359	042	.040	.111	.891	.043	042	<mark>.02</mark> 3
V ₁₅	.261	.170	.683	.236	428	079	.072	.432	.075	122	.754	134	.127	<mark>07</mark> 2
V ₁₆	105	.115	.608	.424	263	.052	203	020	.110	027	.811	.061	.019	.104
V ₁₇	.730	017	.440	194	.096	291	.100	.880	- .112	.199	.114	102	134	024
V ₁₈	.755	007	.463	035	.055	213	.155	.878	- .145	.150	.206	037	.004	.022
V ₁₉	.274	.513	.118	018	.613	.019	146	.166	.011	.828	.031	018	.145	.118

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology http://www.ijmra.us

V ₂₀	.437	.467	107	.360	028	.068	.510	.333	- .099	.125	.029	.070	.798	188
V ₂₁	.164	.699	.197	.020	.194	050	.093	.168	.179	.567	.172	179	.364	166
V ₂₂	.269	.510	117	012	.454	.016	391	047	- .244	.796	- .040	059	.058	021
V ₂₃	.028	.470	321	.386	182	.422	.090	345	- .246	.065	.110	073	.700	051
V ₂₄	.078	.556	202	.317	.089	.361	.348	116	.004	.226	.023	028	.806	.014
V ₂₅	.128	.570	.086	050	.431	195	145	.092	.112	.738	.019	035	.071	<mark>15</mark> 3

Extracted Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. A. 7

Components Extracted.

January

2014

Table 3 related to factors pattern matrix shown in the left side components matrix, which reveals that factors one has larger values than factors second, third and so on. It visualized a precedence picture of values. The right side of the table rotated component matrix, in the rotation larger value are given larger weight age and smaller are given smaller weight than factors items having more than 0.300 value is scrutinized and place in to the table 4.

Table 4: Factors Interpretation of the overall Issues Affecting Children's Buying Behaviour towards Confectionary Items

Serial no.	Factors	Coefficient value	Name of Item in Factor
1	Consumer satisfaction	.488	Quality(v7)
	& promotional activities (21.413)	.635	News paper ad(v9)
		.787	Magazines ad (v10)
		.880	Scratch coupon(v17)
		.878	Discount(v18)
2	Attractive Design &	.813	Color(v2)
	Advertisement (13.565)	.756	Packaging (v3)
		.874	Shape(v5)
		.392	Radio adv(v8)
3	Availability(11.103)	.828	Easily accessibility(v19)
		.567	In store display(v21)
		.796	Festive season(v22)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

side compo

ISSN: 2249-1058

ISSN: 2249-1058

		.738	Music(v25)
4	Sales promotion(9.026)	.891	Free gift(v14)
		.754	Buy 1 get 1free(v15)
		.811	Extra quantity(v16)
5	Reference group(7.863)	.843	Peer group(v11)
		.880	Elders(v12)
		.770	Parents(v13)
6	Pull strategy(6.156)	.798	Behavior of sales sales
			person(v20)
		.700	Bright light(v23)
		.806	Pleasant scent(v24)
7	Desires(4.376)	.760	Taste(v1)
		.536	Suitable price(v4)
		.808	Quantity(v6)

Source: Primary, (Data Processes through SPSS 18.0).

Table 4 has shown that consumer satisfaction and promotional activities have explained 21.413 per cent variation where as desires have explained 4.376 per cent only. The overall confirmation of descriptive statistics is checked through *F*-value given in the table 5.

 Table 5: Confirmatory Statistics of Factors Affecting Overall Children's Buying Behaviour

 towards Confectionary Items

Factor <mark>s</mark>	h., .	Inferential Statistics of Demographic Variables														
		Age		Gender		Level of		Family s	<mark>tatu</mark> s							
	X					Educatio	n									
		F-	Sign.	<i>F</i> -	Sign	<i>F</i> -	Sign	<i>F</i> -	<mark>Sig</mark> n.							
		value	-2.3	value	value	value	value	value	<mark>val</mark> ue							
			value				15									
1. Consumer	3.61(234.702	.000*	.001	.978	234.702	.000*	3. <mark>4</mark> 19	<mark>.03</mark> 7							
Satisf <mark>action</mark>	7)															
&Pro <mark>motional</mark>																
Activi <mark>ties</mark>																
Quality	3.45	15.920	.000*	.130	.719	15.920	.000*	.355	.702							
News paper ad	3.02	245.692	.000*	.568	.453	245.692	.000*	3.830	.025							
Magazine adv	3.62	97.184	.000*	.634	.428	97.184	.000*	1.800	.171							
Scratch coupon	3.95	158.656	.000*	2.357	.128	152.980	.000*	3.585	.031							
Discount	4.04	152.980	.000*	.459	.500	158.656	.000*	4.393	.015							
2. Attractive Design	3.89(42.490	.000*	2.386	.126	42.490	.000*	1.166	.316							
&Advertisement	6)															

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

IJMŦ

Volume 4, Issue 1

ISSN: 2249-1058

		1	1	1	I	I	1	1	1
Color	3.78	36.640	.000*	3.564	.062	36.640	.000*	.223	.801
Packaging	3.63	31.890	.000*	3.600	.061	31.890	.000*	1.413	.248
Shape	3.62	35.803	.000*	2.245	.137	35.803	.000*	.231	.794
Radio adv	4.53	1.091	.340	.045	.832	1.091	.340	8.753	.000*
3. Availability	4.45(9.301	.000*	.324	.571	9.301	.000*	1.654	.197
	3)								
Easily accessibility	4.48	6.487	.002*	.679	.412	6.487	.002*	2.458	.091
In store display	4.42	7.566	.001*	2.088	.152	7.566	.001*	1.308	.275
Festiv <mark>e season</mark>	4.45	2.084	.130	6.482	.012	2.084	.130	3.135	<mark>.04</mark> 8
music	4.45	7.267	.001*	.083	.774	7.267	.001*	.711	<mark>.49</mark> 3
4. Sales promotion	4.47(1.514	.225	.117	.733	1.514	.225	.251	<mark>.77</mark> 8
	2)								
Free g <mark>ift</mark>	4.42	.752	.470	2.082	.152	.752	.474	2.180	<mark>.11</mark> 9
Buy 1 get 1 free	4.43	4.670	.012	1.406	.239	4.670	.012	.499	.60 <mark>9</mark>
Extra <mark>quantity</mark>	4.56	1.869	.160	1.588	.211	1.869	.160	.8 <mark>43</mark>	<mark>.43</mark> 4
5. Ref <mark>erence gr</mark> oup	4.64(1.452	.239	1.938	.167	1.452	.239	.627	<mark>.53</mark> 6
	1)				-	Sec. 1			
Peer g <mark>roup</mark>	4.66	1.895	.156	1.321	.253	1.895	.156	.213	<mark>.80</mark> 9
Elders	4.68	1.408	.249	2.948	.089	1.408	.249	1.449	<mark>.24</mark> 1
Parent <mark>s</mark>	4.57	.705	.497	.330	.567	.705	.497	1.155	<mark>.39</mark> 1
6. Pul <mark>l strategy</mark>	4.44(.007	.993	4.228	.042	.007	.993	1.7 <mark>95</mark>	<mark>.17</mark> 2
	4)		_						
Behav <mark>ior of sales</mark>	4.47	3.183	.046	1.367	.245	3.183	.046	.545	<mark>.58</mark> 2
person	4.42	2.184	.118	5.7 <mark>5</mark> 1	.018	2.184	.118	1.034	<mark>.35</mark> 9
Bright lighting	4.43	.610	.545	1.905	.171	.610	.545	4.478	<mark>.01</mark> 4
Pleasant scent									
7. Des <mark>ires</mark>	4.01(2.525	.085	.016	.900	2.525	.085	.768	<mark>.46</mark> 7
	5)								
1.Tast <mark>e</mark>	4.47	2.061	.133	.020	.889	2.061	.133	.045	<mark>.95</mark> 6
2.Suitable price	3.25	31.369	.000*	2.371	.127	31.369	.000*	.249	<mark>.78</mark> 0
3.Qua <mark>ntity</mark>	4.32	1.678	.192	1.500	.224	1.678	.192	2.339	.102

Source: Primary, (Data Processes through SPSS 18.0).

Value in the Parenthesis shows rank, *Significant at 0.01

The Table 5 shows that factor 5 is at the top by which children makes their buying behavior towards confectionery items (mean= 4.64) followed by factor 4 sales promotion (\bar{x} =4.47). On the contrary, they least consider satisfaction and promotional activities (\bar{x} =3.61) followed by attractive design (\bar{x} =3.89).

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

As far as *F*- statistics (ANOVA) is concerned, table 5 shows that age wise and level of education wise children are significantly differ on factors, consumers satisfaction and promotional activities, attractive design and advertisement and availability (except, item as festive season) towards buying behavior of confectionery items. In addition to, age wise and level of education wise children are significantly differ on desire related to suitable price. So the hypothesis is rejected.

But, they are unanimously completely agreed on other factors viz. sales promotion, reference group, pull strategy and desire so on basis of these hypothesis is accepted.

Other sides, family status and gender wise children are unanimously agreed on all factors, consumer satisfaction and promotional activities, attractive design and advertisement, availability, sales promotion, reference group, pull strategy and desires, so the hypothesis is accepted on all factors.

On the basis of family status, children are significantly differing on radio advertisement item of factor, attractive design and advertisement so the study rejects the hypothesis on this item.

5. Conclusions and Suggestions

Conclusions: It is concluded that policies related to consumers satisfaction and promotional activities, attractive design and advertisement and availability are the alternatives and almost all reviewed studied in literature has also concluded these point directly and indirectly.

Suggestions: It is suggested that policies related to consumers satisfaction and promotional activities, attractive design and advertisement and availability are the alternatives which should be targeted on the basis of age and level of education for development of the items of confectionery business.

Further Area of research: The study may be extended at national and international level by including independent variables such as culture, family size, occupation of family, etc.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

References

- Ahuja, R. D. B., K.M. Stinson (1993) "Female-Headed Single Parent Families: An Exploratory Study of Children's Influence in Family Decision Making." *Advances in Consumer Research*, 20, 469-474.
- Atkin, C.K. (1978). Observation of parent-child interaction in supermarket decision-making, Journal of Marketing, 42 (4), pp. 41-45.
- Bardy Darwin (2006), Moms influences the purchases of confectionery products (The confectioner 2006 issue).
- 4. Bahn, K.D. (1986). How and when do brand perceptions and preferences first form: A cognitive developmental investigation. Journal of Consumer Research, 13 (3), pp. 382-393.
- 5. Chadha, R. (1995) The Emerging Consumer A Profile of Indian Housewife and Its Implications, Wiley Eastern Ltd., New Delhi.
- Dhobal, Shailesh. (1999) "NUFgen Marketing or Selling to the New Urban Family." Business Today, February 22, 66-81.
- Donkin, A.J.M.; Neale, R.J. and Tilston, C. (1993). Children food purchase request. Appetite, 21 (3), pp. 291-294.
- Ekstrom, K.M., Patriya S. Tansuhaj, and Ellen R. Foxman. 1987. "Children's Influence in Family Decisions and Consumer Socialization: A Reciprocal View." Advances in Consumer Research, 14, 283-287.
- F. Andy, M. Jeremy (2010) Discovering Statistics Using SAS, SAGE Publication India Pvt. Ltd. New Delhi, pp. 541-593.
- 10.Hitchings and Moyniham, P.J. (1998). The relationship between television food advertisement recalled and actual food consumed by children. The Journal of Human Nutrition and Dietetics. 11 (6), pp. 511-517.
- 11. Jey Zemke (2006) Confectionery purchases are effected due to festival seasons (The confectioner -2006 issue.)
- 12. John, D.R. and Lakhmi Rattan (1992). Age differences in children's choice behaviour: The impact available alternatives. Journal of Marketing Research, 29 (2), pp. 216-226.
- 13. John, D. R. (1999). "Consumer Socialization of Children: A Retrospective Look at Twenty– Five Years of Research. "Journal of Consumer Research, 26 (3), 183-213.
- Kapoor D.R., Saigal P. (2013) Research Mehtodology *Methods and Techniques*, Regal Publications, New Delhi-110027, P. 319.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

- Kelly, K.J.; Slater, M.D. and Karan, D. (2002).Image advertisements influence on adolescents perception of the desirability of beer and cigarettes. Journal of Public Policy and Marketing 21 (2), pp. 295-304.
- Lam's, P.X.Y. (1978). Influence of Television commercial on young children. Master's Thesis, North Texas State University, TX May.
- Livingstone, Sonia (2006) Opportunities and constraints framing children and young people's internet use In: Consalvo, Mia and Haythornthwaite, Caroline, (eds.) Internet research annual. Digital Formations, vol. 4 (33). Peter Lang, New York, USA, 59-75. ISBN 9780820478579
- Mangleburg, T.F., D. Grewal, and T. Bristol. 1999. "Family Type, Family Authority Relations and Adolescents' Purchase Influence." *Advances in Consumer Research*, 26, 379-384.
- 19. McNeal JU (1993). Born to shop. Children's shopping patterns. American demographics 15(6), pp 3439. Blackwell R, Miniard P & Engel J (2001). Consumer behaviour. 9th edition. New York Harcourt.
- 20. Nanda A. R., Haub Carl (2007) The Future Population of India, Population Foundation of India, PRB, P.10.
- 21. Pine, K. J. and Nash, A. S. (2002). Dear Santa: The effects of TV advertising on children. International Journal of Behavioural Development, 26, 6.
- 22. Radkar, A. and Mundlay, A (2001). Impact of TV food advertisement on buying decision: Joint project by consumers international (ROAP) and Mumbai Grahak Panchayat India. Results of a survey from Maharashtra, India. Pune: Centre for Research and Education. http://www.ciroap.org/food.
- 23. Ryans, A.B. (1980). A second look at children and the advertising of premiums. Journal of Consumer Research, 6 (4), pp. 414-420.
- 24. Seiter, E. 1993. Sold Separately: Children and Parents in Consumer Culture. New Brunswick, NJ: Rutgers University Press.
- 25. Taras, H.; Boyd, C.; Zive, M.; Nadar, P.; Berry C.C. and Hoy, T. (2000). Television advertising and classis of food products consumed in a paediatric population. International Journal of Advertising 19 (4), pp. 487-494.
- 25.Young (2003). Does food advertisement influence children's food choice? A critical review of some of the recent literature. International Journal of Advertising, 22, pp. 441-459.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

ISSN: 2249-1058

Appendices

Table: KMO and Bartlett's Test

Kaiser-Meyer-Olkin	Measure of Sampling	663
Adequacy.	.005	
Bartlett's Test of	Approx. Chi-Square	1.421E3
Sphericity	df	300
	Sig.	.000

Source: Primary, (Data Processes through SPSS 18.0).

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

IJMŦ

January 2014

ISSN: 2249-1058

Reaction	V_1	V ₂	V ₃	V_4	V ₅	V_6	V ₇	V_8	V 9	V ₁₀	V ₁₁	V ₁₂	V ₁₃	V ₁₄	V ₁₅	V ₁₆	V ₁₇	V ₁₈	V ₁₉	V ₂₀	V ₂₁	V ₂₂	V ₂₃	V ₂₄	V ₂₅
items→																									
Ļ																									
V_1	1.000	.424	.399	.123	.314	.611	.010	134	058	140	.117	.066	033	.168	038	.164	058	073	.078	291	009	103	116	147	082
V_2	.424	1.000	.742	358	.796	.208	383	092	548	489	054	018	.055	.140	.048	.173	311	301	048	279	.037	158	155	101	.045
V ₃	.399	.742	1.000	316	.720	.137	383	214	596	474	117	037	088	.049	074	.093	334	412	106	372	035	158	110	068	.041
V_4	.123	358	316	1.000	362	.291	.629	.093	.574	.476	.051	033	137	090	.128	081	.345	.342	043	.019	193	.001	050	052	165
V ₅	.314	.796	.720	362	1.000	.125	344	168	594	401	085	038	.123	.107	.056	.117	245	261	060	196	.044	122	196	.012	.009
V_6	.611	.208	.137	.291	.125	1.000	.283	033	.160	021	.325	.280	.115	.076	.011	.170	.006	.103	042	140	234	190	213	114	148
V_7	.010	383	383	.629	344	.283	1.000	.113	.485	.489	.029	019	086	083	.163	081	.414	.421	.078	.154	113	.071	113	048	082
V_8	134	092	214	.093	168	033	.113	1.000	.013	.069	018	020	023	.171	.155	.113	.010	.135	024	.163	.083	.199	.253	.201	038
V 9	058	548	596	.574	594	.160	.485	.013	1.000	.732	.052	.006	106	141	.093	113	.541	.584	.066	.175	042	.001	086	130	086
V_{10}	140	489	474	.476	401	021	.489	.069	.732	1.000	.026	062	076	111	.201	146	.705	.704	.190	.261	.072	.176	184	.000	.099
V ₁₁	.117	054	117	.051	085	.325	.029	018	.052	.026	1.000	.748	.440	066	166	013	155	101	023	031	257	047	024	063	093
V ₁₂	.066	018	037	033	038	.280	019	020	.006	062	.748	1.000	.527	.002	186	.027	155	114	046	053	185	045	.002	037	092
V ₁₃	033	.055	088	137	.123	.115	086	023	106	076	.440	.527	1.000	.148	.023	.121	062	023	218	.060	150	163	108	058	122
V_{14}	.168	.140	.049	090	.107	.076	083	.171	141	111	066	.002	.148	1.000	.629	.626	.014	.121	.055	.040	.147	.062	.043	.006	.088
V ₁₅	038	.048	074	.128	.056	.011	.163	.155	.093	.201	166	186	.023	.629	1.000	.492	.430	.458	086	.259	.188	079	.058	031	.050
V ₁₆	.164	.173	.093	081	.117	.170	081	.113	113	146	013	.027	.121	.626	.492	1.000	.048	.114	.073	041	.134	193	.056	.068	038
V ₁₇	058	311	334	.345	245	.006	.414	.010	.541	.705	155	155	062	.014	.430	.048	1.000	.877	.290	.195	.220	.153	258	188	.166
V ₁₈	073	301	412	.342	261	.103	.421	.135	.584	.704	101	114	023	.121	.458	.114	.877	1.000	.238	.295	.215	.101	221	038	.170
V ₁₉	.078	048	106	043	060	042	.078	024	.066	.190	023	046	218	.055	086	.073	.290	.238	1.000	.268	.477	.545	.032	.323	.489
V ₂₀	291	279	372	.019	196	140	.154	.163	.175	.261	031	053	.060	.040	.259	041	.195	.295	.268	1.000	.350	.170	.461	.502	.225
V ₂₁	009	.037	035	193	.044	234	113	.083	042	.072	257	185	150	.147	.188	.134	.220	.215	.477	.350	1.000	.346	.215	.343	.402
V ₂₂	103	158	158	.001	122	190	.071	.199	.001	.176	047	045	163	.062	079	193	.153	.101	.545	.170	.346	1.000	.151	.249	.473
V ₂₃	116	155	110	050	196	213	113	.253	086	184	024	.002	-,108	.043	.058	.056	258	221	.032	.461	.215	.151	1.000	.455	.151
V ₂₄	147	101	068	052	.012	114	048	.201	130	.000	063	037	058	.006	031	.068	188	038	.323	.502	.343	.249	.455	1.000	.138
V ₂₅	082	.045	.041	165	.009	148	082	038	086	.099	093	092	122	.088	.050	038	.166	.170	.489	.225	.402	.473	.151	.138	1.000
• 25	.002			.105			.004	.000	.000	,	.575	.574		.000		.000	.100	.1/0			. 102		1	.150	1.000

Source: Primary, (Data Processes through SPSS 18.0).

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology

January

2014

Volume 4, Issue 1

ISSN: 2249-1058

Table: Reproduced Correlation

Reaction Items	\mathbf{V}_1	V_2	V ₃	V_4	V ₅	V_6	V_7	V_8	V 9	V_{10}	V ₁₁	V ₁₂	V ₁₃	V ₁₄	V ₁₅	V ₁₆	V ₁₇	V ₁₈	V ₁₉	V_{20}	V ₂₁	V ₂₂	V ₂₃	V ₂₄	V ₂₅
V_1	.748 ^a	.481	.457	.192	.386	.669	.122	081	101	159	.138	.102	086	.145	010	.204	082	072	.107	314	081	062	192	095	046
V_2	.481	.800 ^a	.766	384	.780	.242	398	242	587	509	079	032	.054	.177	.030	.225	301	321	032	284	.063	200	168	052	.034
V ₃	.457	.766	.776 ^a	364	.738	.191	400	260	589	542	144	109	063	.050	104	.102	373	416	061	354	.009	186	162	073	.004
V_4	.192	384	364	.707 ^a	420	.395	.639	.135	.624	.484	.041	055	211	112	.084	062	.352	.386	022	.050	194	053	054	064	228
V ₅	.386	.780	.738	420	.803 ^a	.169	408	296	565	446	100	045	.105	.099	.045	.161	239	259	041	170	.106	238	167	004	.046
V_6	.669	.242	.191	.395	.169	.785 ^a	.326	035	.154	.041	.378	.326	.122	.088	.025	.179	.021	.075	012	182	229	182	179	097	209
V ₇	.122	398	400	.639	408	.326	.610 ^a	.111	.628	.547	.053	030	150	095	.128	061	.443	.476	.071	.145	090	.014	061	025	121
V_8	081	242	260	.135	296	035	.111	.376 ^a	.075	003	026	032	086	.302	.212	.256	057	.020	.043	.193	.088	.141	.365	.225	006
V_9	101	587	589	.624	565	.154	.628	.075	.756 ^a	.706	.070	008	079	164	.125	155	.592	.603	.066	.181	098	.048	144	115	087
V ₁₀	159	509	542	.484	446	.041	.547	003	.706	.774 ^a	012	068	056	139	.209	150	.741	.736	.233	.303	.111	.147	187	056	.111
V ₁₁	.138	079	144	.041	100	.378	.053	026	.070	012	.792 ^a	.794	.573	037	245	009	159	102	015	031	259	024	047	040	097
V ₁₂	.102	032	109	055	045	.326	030	032	008	068	.794	.812 ^a	.629	.015	213	.034	188	129	023	019	228	031	037	031	072
V ₁₃	086	.054	063	211	.105	.122	150	086	079	056	.573	.629	.719 ^a	.136	.086	.164	060	.003	201	.089	159	252	090	070	129
V ₁₄	.145	.177	.050	112	.099	.088	095	.302	164	139	037	.015	.136	.814 ^a	.630	.730	.083	.156	.053	013	.189	.039	.076	026	.092
V ₁₅	010	.030	104	.084	.045	.025	.128	.212	.125	.209	245	213	.086	.630	.815 ^a	.601	.432	.509	039	.249	.229	149	.010	.010	002
V ₁₆	.204	.225	.102	062	.161	.179	061	.256	155	150	009	.034	.164	.730	.601	.687ª	.046	.130	036	.002	.119	085	.071	008	011
V ₁₇	082	301	373	.352	239	.021	.443	057	.592	.741	159	188	060	.083	.432	.046	.869 ^a	.845	.286	.223	.234	.138	335	164	.215
V ₁₈	072	321	416	.386	259	.075	.476	.020	.603	.736	102	129	.003	.156	.509	.130	.845	.858 ^a	.266	.328	.246	.107	230	067	.177
V ₁₉	.107	032	061	022	041	012	.071	.043	.066	.233	015	023	201	.053	039	036	.286	.266	.749 ^a	.249	.530	.657	.087	.288	.620
V ₂₀	314	284	354	.050	170	182	.145	.193	.181	.303	031	019	.089	013	.249	.002	.223	.328	.249	.814 ^a	.423	.153	.484	.628	.196
V ₂₁	081	.063	.009	194	.106	229	090	.088	098	.111	259	228	159	.189	.229	.119	.234	.246	.530	.423	.604 ^a	.428	.230	.400	.515
V ₂₂	062	200	186	053	238	182	.014	.141	.048	.147	024	031	252	.039	149	085	.138	.107	.657	.153	.428	.705 ^a	.169	.235	.565
V ₂₃	192	168	162	054	167	179	061	.365	144	187	047	037	090	.076	.010	.071	335	230	.087	.484	.230	.169	.694 ^a	.619	.051
V ₂₄	095	052	073	064	004	097	025	.225	115	056	040	031	070	026	.010	008	164	067	.288	.628	.400	.235	.619	.716 ^a	.212
V ₂₅	046	.034	.004	228	.046	209	121	006	087	.111	097	072	129	.092	002	011	.215	.177	.620	.196	.515	.565	.051	.212	.596 ^a

Note: The lower left triangle contains the reproduced correlation matrix, a. diagonal contains the communalities and the upper right triangle contains the residuals between the observed correlation and the reproduced correlations. There are 79 (26%) non-redundant residuals with absolute values greater than 0.05.

Source: Primary (Data processed through PASW 18.0).

This equation can be used to estimate a person's score on a factor, $Y_i = b_1 X_1 + b_2 X_2 + \dots + b_n X_{ni} + \dots$

é _{i.}

Where, b= component matrix value X= range value or interval scale value of a person.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us